G.C.E.(O.L.) Support Seminar - 2014 Mathematics I (Part A) Answer Guide

Que	estion No.	Correct Answer	1	Marks	Remarks
1.		1.55	1	1	
2.		Rs. 22.00	1		
3.		$\frac{1}{5}$	1	1	
4.		$x = 45^{\circ}$	1	1	
5.		x = 4	1	1	
6.		120 g	1	1	
7.		3	1	1	
8.		5a	1	1	
9.		6	1	1	
10.		$\frac{1}{4}$	1	1	
11.		1001 _{two}	2	2	
12.		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2	Solving the inequality 01 mark
13.	(i)	Highest Common Factor = 3	1		
	(ii)	Least Common Multiple = 120	1	2	
14.		x = 98°	2	2	Exterior angle = 98° or Interior angle = 82° }

Que	estion I	No.	Correct Answer	N		Remarks
15.			$\frac{2x-2}{x-1}$	1		
			= 2	1	2	
16.			Tax for the year = Rs. 2000	1		
			Assessed value of the house = Rs. 40 000	1	2	
17.			tx - x = a	1		
			$x = \frac{a}{t-1}$	1	2	
18.			(3, 5)	2	2	$y = 2 \times 3 - 1$ 01 mark
19.			$\frac{1}{2} \times \sqrt{3} a \times 2a$	1		Obtaining $\sqrt{3} a$
			$\begin{vmatrix} \frac{1}{2} \times \sqrt{3} a \times 2a \\ = \sqrt{3} a^2 \end{vmatrix}$	1	2	
20.			$\log_3 81 = 4$ $x = 2$	1	2	
			$\lambda - \lambda$	1		
21.			$ \sqrt{8} = 2\sqrt{2} $ $ 5\sqrt{2} $	1 1	2	
22.			× × V	2	2	All three conclusions correct.
23.			$a = 80^{\circ}$	2	2	$PRQ = 50^{\circ}$ 01 mark
24.	(i)		AE: EC	1		
	(ii)		$\frac{AD}{DB} = \frac{5}{8}$			
			$\frac{4}{DB} = \frac{5}{8}$			
			DB = 8 $DB = 6.4 cm$			
			AB = 10.4 cm	1	2	

Que	stion N	lo.	Correct Answer]	Marks	Remarks	
25.			$x + 3x = 180^{\circ}$ $x = 45^{\circ}$				
	(i) (ii)		45° Number of sides = 8	1 1	(2)		
	()		Number of sides = 8	1			
26.			Machine hours $= \frac{18 \times 2}{4} = 9$	2	2	Number of machine hours = 3 × 6 01 mark	
27.	(i)		Median = 12	1			
	(ii)		Inter-quartile range = 20 - 8 = 12	1	2		
28.			Δ <i>ACB</i> (Triangles with equal base on the same straight line and common vertex)	1			
			ΔABE	1	2		
29.			Q R				
			Bisector of the angle	1			
			Arc of radius 5 m	1	2		
30.			34 questions	2	2	2 or 0	

G.C.E.(O.L.) Support Seminar - 2014 Mathematics I (Part B) Answer Guide

Qu	estion	No.	Correct Ans	wer		Marks		Remarks
1.	(a)		$26 \div \left(2\frac{1}{3} - \frac{1}{6}\right)$					
			$= 26 \div 2\frac{1}{6}$ $= 26 \times \frac{6}{13}$		1			
			$= 26 \times \frac{6}{13}$				_	
			= 12		1	2	2	
	(b)	(i)	Singing or dancing $=\frac{1}{3} + \frac{1}{4}$	-	1			
			$=\frac{7}{12}$		1	2		
		(ii)	Remaining = $1 - \frac{7}{11}$	$\frac{7}{2} = \frac{5}{12}$	1			
			Dancing $= \frac{5}{12} \times$	4 5				
			$=$ $\frac{1}{3}$		1	2		
		(iii)	Not participated $=\frac{5}{12} \times$	$\frac{1}{5}$ or $\frac{5}{12} - \frac{1}{3}$	1			
			$= \frac{1}{12}$		1	2		
		(iv)	Not participated $\frac{1}{12} = 20$ stude	ents				
			Dancing $\frac{1}{4} = 20 \times 3 \text{ or}$ $= 60$	$20 \times 12 \times \frac{1}{4}$	2	2	8	
2.	(i)		DC = 34 m		1	1		
	(ii)		$\frac{1}{2}(20+34) \times 14$ or 20×14	$+ \frac{1}{2} \times 14 \times 14$	1+1			
			$= 378 \text{ m}^2$		1	3		
	(iii)		Perimeter of the pond = $\frac{1}{2} \times 2$ = 36 m	$2 \times \frac{22}{7} \times 7 + 14$	1	(2)		
			- 50 m		•			

Q	uestion	No.	Correct Answer		Mark	S	Remarks
	(iv)		$\frac{1}{2} \times \frac{22}{7} \times 7 \times 7$ $= 77 \text{ m}^2$	1 1	2		
	(v)		14 m	1	2	10	Diagram Indicating 27 m
3.	(a)	(i) (ii)	Chandimal : Ganesh : Razeek $3 : 2 \\ 4 : 5$ $6 : 4 : 5$ $\frac{6}{15} - \frac{4}{15} = \text{Rs. } 20000$	2	2		
		(:::)	$\frac{2}{15} = \text{Rs. } 20000$ $\text{Total Profit} = \text{Rs. } \underline{20000} \times 15$ $= \text{Rs. } 150000$	1	(3)	\bigwedge	
	(b)	(iii)	Chandimal should give Rs. 10 000 to Ganesh. Production cost = $\frac{100}{80} \times 1280$ = Rs. 1600	1 1	2	<u> </u>	
		(ii)	Price the dress to be sold = Rs. $\frac{120}{100} \times 1600$ = Rs. 1920	1	1	10	

Qı	ıestion	No.	Correct Answer	N	Marks		Remarks
4.	(a)	(i)	$ \begin{array}{c} \frac{4}{6} \text{Obtaining} \\ \frac{2}{5} \text{Red} \frac{2}{6} \text{Not obtaining} \\ 4 \end{array} $	1+1	2		for $\frac{2}{5}$ and $\frac{3}{5}$
		(ii)	$\frac{3}{5}$ White $\frac{4}{6}$ Obtaining $\frac{2}{6}$ Not obtaining $\frac{4}{6}$	1	1		
		(iii) (iv)	Extension of the tree diagram	1+1	2		Two branches correct
	(b)		$\begin{vmatrix} \frac{3}{5} \times \frac{4}{6} \\ = \frac{12}{30} \text{ or } \frac{2}{5} \end{vmatrix}$	1	2	7	
			$\begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 10 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} C \\ 5 \end{bmatrix}$				
		(i) (ii)	$n(A \cap C) = 4$ $A \cap (B \cup C)' \text{ or } A \cap B' \cap C'$	2	(2) (1)	3	
5.	(i)		40	1	(1)		
	(ii)		$ \begin{array}{cccc} 60 - 80 & \longrightarrow & 8 \\ 110 - 120 & \longrightarrow & 6 \end{array} $	1	2		
	(iii)		Correct two columns	1 + 1	2		
	(iv)		Both ends correct Joining the mid-points of the columns of different breadth correctly.	1 1+1	3		
	(v)		$\frac{16}{31} \times 100 = 51.6\% > 50\%$ Agree. * * *	1	2	10	

G.C.E.(O.L.) Support Seminar - 2014 Mathematics II (Part A) Answer Guide

Qu	estion	No.	Correct Answer		Marks	S	Remarks
1.	(a)	(i)	Rs. 120 000	1	1		
		(ii)	Rs. 120 000/ 24 = Rs. 5000	1	1		
		(iii)	$5625 \times 24 = \text{Rs. } 135000$	1			
			Extra amount = Rs. 135 000 - Rs. 120 000 = Rs.15 000	1	2		Rs. 625 × 24 = Rs. 15 000
		(iv)	Number of month units = Rs. $\frac{24 \times 25}{2} = 300$	1			
			If rate of interest is r , $\frac{15\ 000}{300} = \frac{r}{100} \times \frac{1}{12} \times 5000$	1			
			r = 12%	1	3		
		(v)	Selling price = $\frac{88}{100} \times 150000$	1			
			= Rs. 132 000	1	2	9	
	(b)		Income = $\frac{20}{100} \times 5000 \times 25$ = Rs. 25 000	1	1	10	
2.	(a)	(i)	y = (1+2)(3-2) = 3	1	1		
		(ii)	Correct axes Correct points Smooth curve	1 1 1	3	4	
	(b)	(i)	(-1, 4)	1			
		(ii)	x = +1.4 and $x = -3.4$	2			
		(iii)	-3 < x < 1	2			
		(iv)	$y = 4 - (x+1)^2$	1	6	10	

Que	estion	No.	Correct Answer		Marks	3	Remarks
3.	(a)	(i)	$2\mathbf{A} = \begin{pmatrix} 3 & 4 \\ -2 & 7 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	1			Identify I
			$ 2\mathbf{A} = \begin{pmatrix} 2 & 4 \\ -2 & 6 \end{pmatrix} \implies \mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} $	1 +1	3		
	(b)	(i)	$2(x^2 - 9) = 2(x + 3)(x - 3)$	1			
		(ii)	9a(x + 2y) - 5b(x + 2y) = $(x + 2y)(9a - 5b)$	1 1	3		
	(c)		3x + 1 = 4y $x - 4 = y + 4$	1 1			
			x = y + 8 $x = 33$ $y = 25$	1 1	4	10	
4.	(a)	(i)	Rs. $\frac{2400}{x}$	1	1		
		(ii)	Rs. $\frac{2400}{x-5}$	1	1		
		(iii)	2400 2400	1			
			$x^2 - 5x - 750 = 0$	1			
			x = 30 or $x = -25Number of students = 30$	1	3	5	
	(b)		$x^2 - 4x - 16 = 0$				
			$(x-2)^2 = 16+4$	1			
			$x-2 = \pm \sqrt{20}$	1			
			$x = 2 \pm 2 \sqrt{5}$				
			$x = 2 \pm 2 \times 2.24$	1			substitution for $\sqrt{5}$
			x = 2 + 4.48 or $x = 2 - 4.48= 6.48 = -2.48$	1 + 1	(5)	5	
						10	

Qı	uestio	on No.	Correct Answer		Mark	S	Remarks
			Or applying the formula				
			a = 1, b = -4, c = -16	1			
			$x = \frac{-(-4) \pm \sqrt{16 - 4 \times 1 \times (-16)}}{2 \times 1}$	1			substitution
			$= \frac{4 \pm \sqrt{80}}{2}$	1			
			$= \frac{4 \pm 4\sqrt{5}}{2} = 2 \pm 2\sqrt{5}$				
			x = 6.48 or $x = -2.48$	1 + 1	5		
5.	(a)	(i)	Diagram	1	1		
		(ii)	$\sin 38^{\circ} 20' = \frac{CP}{150}$ North	1			
			$CP = 150 \times 0.6202$ $P = 93.03 \text{ m}$	1			
			= 93 m	1	(3)		
		(iii)	$\tan \theta = \frac{93}{80}$	1			
			= 1.1625	1			
			$\theta = 49^{\circ} 18'$ Bearing = $180^{\circ} - 49^{\circ} 18' = 130^{\circ} 42'$	1 1	4	8	
	(b)	(i)	1 cm → 25 000 cm				
	(0)		= 250 m				
			10 cm> 2500 m				
			= 2.5 km	1			
		(ii)	1 km> 4 cm				
			3 km> 12 cm	1	2	10	

Qu	estion	No.		Correc	t Answe	r			Mark	S	Remarks
6.	(i)		160 - 180					1	1		
	(ii)		Number of loaves of bread sold 100 - 120 120 - 140 140 - 160 160 - 180 180 - 200 200 - 220	Number of days f 2 4 8 12 3 1	Mid value x 110 130 150 170 190 210	220 520 1200 2040 570 210		1 1 1			Mid value coloumn fx coloumn $\sum fx$
				$\Sigma f = 30$		$\Sigma fx = 4760$					
			Mean number of	of loaves of	bread =	$= \frac{\sum fx}{\sum f}$					
					=	= <u>4760</u> 30		1			division by 30
						= 158.6 = 159		1	(5)		
	/··· \		_	D 60				1			
	(iii)		Income =	Rs. 60 ×		30		1	2		Rs. 4760 × 60 = Rs. 285 600
	(iv)		$(120 \times 2) + (200 \times 3) + (200$	20 × 1) e statement			2) +	2	2	10	
7.	(a)	(i)	28, 25, 22, An arithmetic p	rogression				1	1		
		(ii)	$T_n = a + (n - 1)$ $T_7 = 28 + 6$ $= 28 - 1$ $T_7 = 10$ \therefore Number of c	8	p in the 7	th layer = 10		1	2		

Qu	Question No.		Correct Answer		Mark	KS	Remarks
		(iii)	$T_n = a + (n-1)d$ $1 = 28 + (n-1)(-3)$ $1 = 28 - 3n + 3$ $1 = 31 - 3n$ $3n = 30$ $n = 10$ Number of layers = 10	1	2		
		(iv)	$S_n = \frac{n}{2} (a + l)$ $S_{10} = \frac{10}{2} (28 + 1)$ $= 5 \times 29$ $= 145$ Number of cakes of soap in one display = 145 Number of cakes of soap in five displays = 145 \times 5 $= 725 > 720$ $\therefore \text{ The statement is false.}$	1 1 1	3	8	
	(b)		$2x^{2} \text{ and } 18x^{4}$ Geometric Mean $= \sqrt{2x^{2} \times 18x^{4}}$ $= \sqrt{36x^{6}}$ $= 6x^{3}$	1	2	10	
8.			4.6 cm 4.6 cm 5.5 cm 8	\			A rough sketch

Qu	estion	No.	Correct Answer		Marks	1	Remarks
9.	(i) (ii) (iii) (iv) (v) (a)	(i) (ii)	Correct Answer $AB = 5.5 \text{ cm}$ $BAD = 60^{\circ}$ $AD = 4.6 \text{ cm}$ $AB // DC$ $ABCD$ Trapizium such that $DC = 7.0 \text{ cm}$ Perpendicular bisector of BC Perpendicular to DC at C Circle Radius = $3.8 \pm 0.1 \text{ cm}$ Obtaining E on the circle such that $DC = DE$ Height of the cone = $3a$ Height of the compound solid = $3a + a$ = $4a$ Volume of the cone + volume of hemisphere = $\frac{1}{3} \times \pi \times a^2 \times 3a + \frac{1}{2} \times \frac{4}{3} \times \pi \times a^3$	1 1 1 1 1 1 1 1	5 (1) (1) (1)	10	Remarks
		(iii)	$= \pi a^{3} + \frac{2}{3} \pi a^{3}$ $= \frac{5}{3} \pi a^{3}$ volume of a cylinderical rod = $\pi \left(\frac{1}{3}a\right)^{2} \times 5a = \frac{5}{9} \pi a^{3}$ Number of rods $= \frac{\frac{5}{3} \pi a^{3}}{\frac{5}{9} \pi a^{3}}$ $= \frac{5}{3} \times \frac{9}{5}$ $= 3$	1	2	5	

Question No.		No.	Correct Answer	1	Mark	s	Remarks
	(b)		$x = \frac{43.27^2}{\sqrt{0.0754 \times 852}}$				
			$\lg x = 2\lg 43.27 - \left[\frac{1}{2}\lg 0.0754 + \lg 852\right]$	1			
			$= 2 \times 1.6362 - \left[\frac{1}{2} \times \overline{2.8774} + 2.9304\right]$	2	All 3	logarit	hms correct - 2
			= 3.2724 - [1.4387 + 2.9304]	1	Two	logarith	ms correct - 1 multiplication
			= 3.2724 - 2.3691				or division
			x = antilg 0.9033 $= 8.003$	1	5	5	
10.	(i)		114	1			
	(ii)		E 14 40 135 N 114 P				
			33	3			
	(iii)		40	1			
	(iv)		Private schools that did not win	1			
	(v)		$I \cap (N \cup P)'$ or $I \cap N' \cap P'$	2			
	(vii)		$\frac{70}{352}$ or $\frac{35}{176}$	2 or 0	10	10	
11.	(a)	(i)	Since $\overrightarrow{CAB} = 60^{\circ}$, $\overrightarrow{CDB} = 120^{\circ}$ (Opposite angles of a cyclic quadrilateral are supplementary.)	1 + 1	2		
		(ii)	$B\hat{C}D = \frac{180^{\circ} - 120^{\circ}}{2} = 30^{\circ}$ (Angles of an isosceles triangle)	1	1	3	
	(b)	(i)	$A\widehat{CD} = 60^{\circ} + 30^{\circ} = 90^{\circ}$ AD is a diameter. (Since the angle subtended by AD at C is 90°)	1	(1)		
		(ii)	$\overrightarrow{CDE} = 60^{\circ}$ (Exterior angles of a cyclic quadrilateral or any other correct method)	1			
			$\therefore D\hat{C}E = C\hat{E}D = 60^{\circ}$ $\therefore CDE \text{ is an equirateral triangle.}$	1	2		
		(iii)	$\stackrel{\wedge}{CDA} = \stackrel{\wedge}{BDA} = 60^{\circ}$ (since $\triangle CDA$ and $\triangle BDA$ are congruent) $\therefore CE // AD$ (Consecutive interior angles being supplementary or	1			
			corresponding/ alternate angles being equal)	1	2	$\sqrt{7}$	
		(iv)	By showing an angle in a relevant Δ is 90°	2	2	10	

Que	Question No.		Correct Answer		Marks		Remarks
12.	(i)		Z Y X B	1	1		figure
	(ii)		ZY // DA and $DZ // AY$	1	1		
	(iii)		AY = YC (Converse of the mid point theorem)	1 1	2		
	(iv)		Since Y is the mid point of AC and since $\overrightarrow{ABC} = 90^{\circ}$, the circle with centre Y and diameter AC passes through the point B. (Converse of the theorem "the angle in a semi circle is a right angle") $\therefore YA = YB = YC$ $\therefore YB = DZ$ aliter	2 1	3		
			When $\triangle YXB$ and $\triangle YXC$ are considered, $YXB = YXC = 90^{\circ} \text{ (since } YX // AB)$ XB = XC XY is common. $\therefore \triangle YXB = \triangle YXC \text{ (S.A.S.)}$ $\therefore YC = YB$ But, since $YC = YA = ZD$, $YB = ZD$	1 1 1			
	(v)		Area of the trapezium $DZYB$ = Area of the parallelogram $DZYA$ + area of the ΔAYB = 3 × area of the ΔAYB = 3 × 2 × area of the ΔBXY = 6 × area of the ΔXYC	1			
			Reasoning * * *	1	3	10	